1 Introduction

1.1 The Empirical Domain

- **VP-Ellipsis (VPE).** A predicate may be omitted under identity, stranding one or more auxiliaries (Johnson 2001, Sailor 2014).

\[\text{Sue [VP saw the cat] and Tim also did } \langle \text{VP see the cat} \rangle \]

- **Antecedent-Contained Deletions (ACD).** VPE is licensed even when the elided material is apparently contained in its antecedent (Bouton 1970, Fox 2002).

\[\text{Sue [VP saw the cat that Tim (also) did } \langle \text{VP see the cat} \rangle \]

- **Vehicle Change (VC) Effects.** R-expressions apparently fail to trigger expected Condition C violations under ellipsis (Fiengo & May 1994).

\[\text{Sue [VP saw Tim}_1\text{'s cat on the table] and } \text{he}_1 \text{ also did } \langle \text{VP see Tim}_1\text{'s cat on the table } \rangle \]

1.2 The Puzzle

- **Vehicle Stability.** VC Effects are more limited in the context of ACD; the expected disjoint reference effect arises in (4).

\[*\text{Sue [VP saw Tim}_1\text{'s cat on the table that } \text{he}_1 \text{ (also) did } \langle \text{VP see Tim}_1\text{'s cat on the table } \rangle \]

- **A Configurational Asymmetry.** VC Effects are observed in a minimally differing coordination configuration in (3).

1.3 The Idea

- **Intolerable-Mismatch Avoidance.** VC effects arise from parallel covert movements of an R-expression and an elided referential pronoun (cf. Drummond & Shimoyama 2014).

\[\text{Tim}_1 [\lambda 2 \text{ SUE saw x}_2\text{'s cat and his } \lambda 3 \text{ HE}_1 \text{ did } \langle \text{VP see x}_2\text{'s cat } \rangle \text{ too } \]

- **Irreparable Antecedent-Containment.** The movement of the R-expression may result in irreparable antecedent-containment of an ellipsis site.

\[*\text{Tim}_1 [\lambda 2 \text{ SUE [VP DP}_2 \text{ [VP saw x}_2\text{'s cat on z } \text{ the table that his } \lambda 3 \text{ HE}_1 \text{ did } \langle \text{VP see y}_3\text{'s cat on z } \rangle] }] \]

- **A Bonus Puzzle.** The analysis helps us understand the observation that VC effects can be found in environments that disallow bound-variable interpretations.

\[*\text{Bill}_2 \text{ wouldn’t say which book}_3 \langle \text{IP he read } x}_3 \rangle \]

b. \[\text{she}_1 \text{ wouldn’t say which book}_3 \langle \text{IP Pam read } x}_3 \rangle \]

1.4 Outlook

- **VC effects are more restricted in ACD environments than other VPEs.**

- **Available treatments of VC effects fail to predict the contrast.**

- **VC effects are reducible to motivated mechanisms and constraints on ellipsis.**

- **VC effects are correctly predicted in coordinations and certain ACDs.**

- **The proposed analysis correctly distinguishes between VC effects and bound pronouns.**
2 Vehicle Stability

2.1 Some Opening Data

- **Some Context.** The minimal pair in (8) is intended to illustrate the restricted distribution of VC effects in ACD configurations relative to standard VPE.

\(\text{(8) Context: Sue and Tim are looking for Tim's lost cat. Tim last saw his cat sitting on the table in the kitchen. Sue also saw Tim's cat sitting on this table.} \)

a. Sue saw Tim's cat on the table...

\[\text{VPE} \]

b. *that he (also) did \(\langle \text{VP see his cat on the table} \rangle \) \(\text{ACD} \)

- **Persistent Stability.** The relevant contrast can be observed in a range of syntactic environments with ACD configurations.

\(\text{(9) We gave Dale's client the report} \)

a. \(\text{and he also did} \langle \text{VP give his client the report} \rangle \) \(\text{VPE} \)

b. *that he (also) did \(\langle \text{VP give his client} \rangle \) \(\text{ACD} \)

- **The Same Effect.** The adjective *same* seems to rescue VC effects.

\(\text{(12) Sue saw Tim's cat on the same table that he did} \langle \text{VP see his cat on the table} \rangle \)

Given the analysis to be presented, this is possibly an effect of the exceptional scope that *same* provides to DPs (Barker 2007; see Overfelt (to appear) for similar effects on other ACDs).

2.2 The Problem: An Unexpected Contrast

- **Tolerable mismatch.** Fiengo & May (1994) and Merchant (2001) argue that VC effects arise from the tolerable variance/mismatch between pronouns and R-expressions under ellipsis.

\(\text{(13) Sue} \langle \text{VP saw Tim's cat} \rangle \text{ and he did} \langle \text{VP see his cat} \rangle \text{ too} \)

- Fiengo & May (1994). *Tim* could not be both equivalent (8a) and non-equivalent (8b) for the purpose of ellipsis-licensing.

- Merchant (2001). The R-expression *Tim* and pronoun *his* would be semantically equivalent in both constructions. F-closure of the VPs would entail each other in both cases.

- **QR Feeds VC.** Drummond & Shimoyama (2014) modify Aoun & Nunes (2007) to argue that VC effects result from the conversion of elliptical traces of QR into pronouns.

\(\text{(14) i. Sue} \langle \text{Tim [VP saw t's cat]} \rangle \text{ ... he did} \langle \text{VP e} \rangle \)

\[\text{QR} \]

ii. Sue \langle \text{Tim [VP saw t's cat]} \rangle \text{ ... he did} \langle \text{VP see t's cat} \rangle

\[\text{LF-Copy} \]

iii. Sue \langle \text{Tim [VP saw t's cat]} \rangle \text{ ... he did} \langle \text{VP see t's ⇒ his cat} \rangle

- **The VC Mechanism.** A copied trace that is either (i) placed in an island or (ii) unbound is converted by a VC mechanism into a pronoun.

\(\text{LF-Copying into a relative clause is incorrectly predicted to trigger VC in (8b).} \)

- **Toward Eliding Pronouns.** (Traces of) R-expressions in ellipsis sites are known to trigger disjoint reference effects (Lechner 2001, Bhatt & Takahashi 2011, Hunter & Yoshida 2016, Overfelt 2018).

\(\text{(15) *He} \text{ said MARY left, but not JOHN} \langle \text{he said JOHN, left} \rangle \)

- **The Problem.** We require a model of VC effects that elides (traces of) pronouns and is able to distinguish between ACD configurations and standard cases of VPE.
3 A Model of Vehicle Change

3.1 Ellipsis Licensing

- A Focus Contrast Condition. We will adopt an ellipsis licensing condition of the type proposed by Rooth (1992).

(16) **Ellipsis Licensing Condition**
Ellipsis of some XP_E is licensed only if:
i.) there is a constituent PD that contains XP_E,
ii.) there is an antecedent constituent AC, and
iii.) for any assignment function g, [AC]^g ∈ || PD ||^g.

- Licensing Ellipsis. Ellipsis is licensed if an AC can be identified that is a focus alternative of a PD containing the XP_E.

(17) [AC: KIM likes cats] and [PD: TOM does ⟨ vp like cats ⟩] too

(18) i.) [AC]^g = Kim likes cats
ii.) || PD ||^g = { p : X likes cats | X ∈ D_e }
iii.) [AC]^g ∈ || PD ||^g, ellipsis is licensed

- Ellipsis with Bound Variables. Contra-indexed variables in the VP_E will disrupt ellipsis-licensing (Takahashi & Fox 2005).

(19) *cats λ_1 [AC: KIM likes y_1] and dogs λ_2 [PD: TOM does ⟨ vp like y_2 ⟩].

(20) i.) [AC]^g = Kim likes y_1
ii.) || PD ||^g = { p : X likes z_2 | X ∈ D_e }
iii.) [AC]^g /∈ || PD ||^g, ellipsis is not licensed

The PD must be extended to include the binder index on penalty of unlicensed ellipsis.

(21) cats [AC: λ_1 KIM likes y_1] and dogs [PD: λ_2 TOM does ⟨ vp like z_2 ⟩].

(22) i.) [AC]^g = λ_2 Kim likes y
ii.) || PD ||^g = { p : λ_2 X likes z | X ∈ D_e }
iii.) [AC]^g ∈ || PD ||^g, ellipsis is licensed

3.2 The Set-Up

- Three Assumptions. The analysis to follow rests on three assumptions:
 1.) **No Mixed Structures.** AC:PD pairs with “mixed” corresponding referential and bound indices are not possible (e.g., Sag 1976; cf. Fox 2000, Kehler 2015).
 2.) **No Partial Alternatives.** The computation of focus-alternatives uniformly replaces all relevant co-indexed expressions with their alternatives (Kratzer 1991).
 3.) **No Meaningless Coindexing.** If an index n is bound, then all occurrences of n must be bound (adapted from Heim 1997).

- An Intolerable Mismatch. These assumptions ensure that ellipsis cannot be licensed in either coreference (23) or binding configurations (24).

(23) *[AC: SUE saw Tim_1’s cat] and [PD: HE_1 λ_2 did ⟨ vp see his cat ⟩]

(24) *[AC: SUE read Tim_1’s cat] and [PD: HE_1 did ⟨ vp see his cat ⟩]

- Intolerable-Mismatch Avoidance. VC effects arise from parallel covert movements of an R-expression and an elided referential pronoun (cf. Drummond & Shimoyama 2014)

(25) Tim_1 [AC: λ_2 SUE saw x_2’s cat] and his_1 [PD: λ_3 HE_1 did ⟨ vp see x_2’s cat ⟩] too

3.3 No Mixed Structures

- Antecedents of Strict Pronouns. Strict interpretations of elided pronouns could conceivably be treated in (at least) two ways:

(26) **Coreference**
Kim_1 likes her_1 cat and Tom_2 does ⟨ vp like her_1 cat ⟩ too

(27) **Mixed Binding and Coreference**
Kim_1 λ_2 likes her_2 cat and Tom_3 does ⟨ vp like her_1 cat ⟩ too.
• **Dahl-Schiebe Effects.** Dahl (1973), citing Schiebe (1973), provides (28) to argue that mixed structures would have to be permitted.

(28) John $\lambda 1$ [realizes that he$_1$ is a fool], but Bill $\lambda 2$ does not (realize that he$_2$ is a fool), even though his wife$_3$ does (realize that he$_3$ is a fool) (Dahl 1973:83, (12))

• **Modulating Mixed Readings.** Examples like (29) can be taken to suggest that mixed structures are not possible (cf. Elliot et al. 2014, Kehler 2015).

(29) *Bob $\lambda 1$ [vp called his$_1$ mother], and Max $\lambda 2$ did (call his$_2$ mother) too. But Tom didn’t (call his$_3$ mother) (Roelofsen 2010:127, (29))

The minimally differing example in (29) suggests that either (i) the focus-sensitive element even or (ii) subordination plays a special role in the good cases.

(30) Bob$_1$ [vp called his$_1$ mother], and Max$_2$ did (call his$_2$ mother) too, even though Tom didn’t (call his$_3$ mother)

• **The Consequence for VC.** This means that VC constructions will need to be generated (initially) through semantic coreference as in (31).

(31) * Sue$_1$ saw Tim$_2$’s cat and HE$_2$ did (vp see his$_2$ cat) too.

(32) * Sue$_1$ saw Tim$_2$’s cat and HE$_2$ $\lambda 3$ did (vp see his$_3$ cat) too.

It is possible to think of this as an effect of the independently adopted assumption of No Meaningless Coindexing.

3.4 **No Partial Alternatives**

• **Focus Alternatives and Indexing.** Rooth (1992) argues that expressions coreferential with a focused element may be replaced with variables ranging over their alternatives.

(33) $[\text{AC} \text{JOHN}_1$’s coach thinks he$_1$ has a chance] and
$[\text{PD} \text{BILL}_2$’s coach does (vp think he$_2$ has a chance)] too

(34) i.) $[\text{AC}]$ = John’s coach thinks John has a chance
ii.) $[\text{PD}]$ = $\{p : X$’s coach thinks X has a chance $| X \in D_e \}$
iii.) $[\text{AC}]$ $\notin [\text{PD}]$, ellipsis is licensed

• **No Partial Alternatives.** Material that is coindexed with a focused element must co-vary with the alternatives computed for the focused element (Kratzer 1991; see also Beaver & Clark 2008, Erlewine & Kotek 2018).

(35) Context: You accuse me of hugging Mark because you hugged Mark and hugging Phil because you hugged Phil. I object saying:

'It’s not the case that I hugged Phil because you hugged Phil.'

≠ ‘It’s not the case that I hugged Phil because you hugged Mark.’

• **The Consequence for VC.** Ellipsis cannot be licensed in Condition C compliant coreference structures.

(36) *$[\text{AC} \text{SUE saw Tim}_1$’s cat] and $[\text{PD} \text{HE}_1$ did (vp see his$_1$ cat)] too.

(37) i.) $[\text{AC}]$ = Sue saw Tim’s cat
ii.) $[\text{PD}]$ = $\{p : X$ saw X’s cat $| X \in D_e \}$
iii.) $[\text{AC}]$ $\notin [\text{PD}]$, ellipsis is not licensed

3.5 **A Modification of Drummond & Shimoyama (2014)**

• **The Intolerable Mismatch.** VC effects will not come from binding or coreference:

(38) *$[\text{AC} \text{SUE saw Tim}_1$’s cat] and $[\text{PD} \text{HE}_1$ did (vp see his$_1$ cat)]

(39) *$[\text{AC} \text{SUE read Tim}_1$’s cat] and $[\text{PD} \text{HE}_1$ did (vp see his$_1$ cat)]
• **Intolerable-Mismatch Avoidance.** Parallel applications of covert movement are motivated as a means of licensing ellipsis (cf. Drummond & Shimoyama 2014).

\[(40) \text{Tim}_1 [\text{AC SUE saw } x's \text{ cat}] \text{ and he}_1 [\text{PD HE}_1 \text{ did } (\text{VP saw } x's \text{ cat})] \text{ too.} \]

• **Trace Conversion of Indexed DPs.** No Meaningless Coindexing also requires that *Trace Conversion* (Engdahl 1980, Sauerland 1998, Fox 2002) overwrites the index on the trace of an indexed DP.

\[(41) \text{Tim}_1 [\lambda_2 \text{ Sue saw } x_3's \text{ cat}] \text{ and he}_1 [\lambda_3 \text{ HE}_1 \text{ did } (\text{VP see } x_3's \text{ cat})] \text{ too.} \]

The result avoids the ‘No Partial Alternatives’ problem (and crossover effects). Ultimately, ellipsis is licensed on the intended interpretation.

\[(42) \text{ i.) } [\text{AC }]^g = \lambda x. \text{ Sue saw } x's \text{ cat} \]
\[\text{ ii.) } [\text{PD }]^g = \{ p : \lambda x. Y \text{ saw } x's \text{ cat} \mid Y \in D_e \} \]
\[\text{ iii.) } [\text{AC }]^g \notin [\text{PD }]^g, \text{ ellipsis is not licensed} \]

4 **When VC Bleeds Ellipsis**

4.1 **Antecedent-Contained Deletion**

• **Quantifier Raising.** An influential treatment of ACD involves QR of the host of the ellipsis site to the VP of the antecedent (May 1985, Fox 2002, Cecchetto 2004).

\[(43) \text{ a. Kim likes the cat that Tom does.} \]
\[\text{ b. } [\text{VP the cat that TOM does } [\text{PD }]^g \langle \text{VP TOM like } x \rangle] \]
\[\text{ Assuming an intermediate trace of the relative operator binds a variable in the elided VP, the Ellipsis Licensing Condition can be satisfied.} \]

\[(44) \text{ i.) } [\text{AC }]^g = \lambda x. \text{ Kim likes } x \]
\[\text{ ii.) } [\text{PD }]^g = \{ p : \lambda x. Y \text{ likes } x \mid Y \in D_e \} \]
\[\text{ iii.) } [\text{AC }]^g \in [\text{PD }]^g, \text{ ellipsis is licensed} \]

4.2 **Blocking VC in ACD**

• **Irreparable Antecedent-Containment.** The covert movement that feeds VC effects effectively bleeds ellipsis in vanilla ACD configurations.

\[(45) \text{ a. *Sue saw Tim’s cat on the table that he did } (\text{VP see his cat}) \]
\[\text{ b. } \]

- **Ellipsis Licensing Fails.** Extending the AC in response to the necessarily extended PD re-establishes antecedent-containment.

\[(46) \text{ i.) } [\text{AC }]^g = \lambda x. \text{ Sue saw } x's \text{ cat on the table } y \text{ that Tim saw Tim’s cat on} \]
\[\text{ ii.) } [\text{PD }]^g = \{ p : \lambda x. Z \text{ saw } x's \text{ cat on the table } y \mid Z \in D_e \} \]
\[\text{ iii.) } [\text{AC }]^g \notin [\text{PD }]^g, \text{ ellipsis is not licensed} \]
5 When VC Succeeds

• A Crucial Component. The analysis above rests on the assertion that ACD-host cannot out-scope the derived position of the covertly moved R-expression under normal circumstances.

\[(47) \quad \star \left[\text{XP Tim}_1 \left[\lambda x \, \text{SUE saw } x_3 \text{'s cat on } y \right] \right] \quad \overset{\text{AC-host}}{\downarrow} \quad \text{the table that his}_1 \left[\lambda x \, \text{HE}_1 \left(\text{VP saw } x_4 \text{'s cat on } y \right) \right] \]

As demonstrated in (48), if this were possible, ellipsis would incorrectly be licensed.

\[(48) \quad \text{i.) } \left[\lambda x \, \text{SUE saw } x_3 \text{'s cat on the table } y \right] \quad \overset{\text{AC-host}}{\downarrow} \quad \text{his}_1 \left[\lambda x \, \text{HE}_1 \left(\text{VP saw } x_4 \text{'s cat on } y \right) \right] \]

\[\text{ii.) } \left[\lambda x \, \text{Z saw } x_3 \text{'s cat on the table } y \mid Z \in D_e \right] \quad \overset{\text{PD-host}}{\downarrow} \quad \left[\lambda x \, \text{Z saw } x_3 \text{'s cat on the table } y \mid Z \in D_e \right] \]

\[\text{iii.) } \left[\lambda x \, \text{his}_1 \left[\lambda x \, \text{HE}_1 \left(\text{VP saw } x_4 \text{'s cat on } y \right) \right] \right] \quad \overset{\text{AC-host}}{\downarrow} \quad \left[\lambda x \, \text{his}_1 \left[\lambda x \, \text{HE}_1 \left(\text{VP saw } x_4 \text{'s cat on } y \right) \right] \right] \]

• A Prediction. VC effects will emerge whenever the ellipsis site escapes the derived scope of the R-expression in the antecedent.

5.1 VC Effects in Coordinations

• Movement within Conjuncts. When the VC-driven instances of covert movement occur in separate conjuncts, antecedent-containment will not arise.

\[(49) \quad \text{Tim}_1 \left[\lambda x \, \text{SUE saw } x_3 \text{'s cat on the table } y \right] \quad \overset{\text{AC-host}}{\downarrow} \quad \text{his}_1 \left[\lambda x \, \text{HE}_1 \left(\text{VP saw } x_4 \text{'s cat on } y \right) \right] \text{ too} \]

• Ellipsis Licensing Succeeds. Because re-binding cannot result in antecedent-containment in coordinations, an acceptable AC and PD can be identified.

\[(50) \quad \text{i.) } \left[\lambda x \, \text{SUE saw } x_3 \text{'s cat on the table } y \right] \quad \overset{\text{AC-host}}{\downarrow} \quad \left[\lambda x \, \text{Z saw } x_3 \text{'s cat on the table } y \mid Z \in D_e \right] \]

\[\text{ii.) } \left[\lambda x \, \text{Z saw } x_3 \text{'s cat on the table } y \mid Z \in D_e \right] \quad \overset{\text{PD-host}}{\downarrow} \quad \left[\lambda x \, \text{Z saw } x_3 \text{'s cat on the table } y \mid Z \in D_e \right] \]

\[\text{iii.) } \left[\lambda x \, \text{his}_1 \left[\lambda x \, \text{HE}_1 \left(\text{VP saw } x_4 \text{'s cat on } y \right) \right] \right] \quad \overset{\text{AC-host}}{\downarrow} \quad \left[\lambda x \, \text{his}_1 \left[\lambda x \, \text{HE}_1 \left(\text{VP saw } x_4 \text{'s cat on } y \right) \right] \right] \]

5.2 Additional Movement of the ACD Host

• Out-scoping the Subject. The ellipsis site can escape the derived scope of the R-expression also when the host of the ACD site out-scopes the subject.

• Topicalization. The topicalization structure in (51) generates a configuration in which the ACD host takes scope at the clause periphery and, thus, above the subject and the R-expression.

\[(51) \quad \text{That table } \mid \text{Sue saw Tim's cat on } x_1. \]

The prediction is that VC effects can emerge in the topicalized DP.

\[(52) \quad \text{The table that HE}_1 \text{ did } \langle \text{see his } \text{cat on } y \rangle \text{, Sue saw Tom}_1 \text{'s cat on } x_2. \]

• Non-commutative Scope. Generating an inverse scope reading relative to the subject could motivate a structure where in the ACD host takes widest scope (Fox 2000, Reinhart 2006).

\[(53) \quad \text{a. } \text{A different person saw Tim’s cat on each table.} \]
\[\text{b. } \text{[each table]} \mid \text{a different person saw Tim’s cat on } x_1 \]
\[\text{“For each table } x, \text{ there is a different person } y \text{ such that } y \text{ saw Tim’s cat on } x.” \]

The prediction is that VCs effects can emerge on the wide-scope interpretation of the ACD host.

\[(54) \quad \text{A different person saw Tim}_1 \text{'s cat on each table that HE}_1 \text{ did } \langle \text{see } \text{his } \text{cat on } y \rangle \]
\[\text{“For each table } x, \text{ such that Tim saw his cat on } x, \text{ there is a different person } y \text{ such that } y \text{ saw Tim’s cat on } x.” \]
6 A Sluicing Puzzle

- **VC Effects ≠ Bound Pronouns.** The proposed Coreference+Movement approach to VC effects has the benefit of providing an explanation for the non-overlapping distribution of VC effect and bound pronominal interpretations under Sluicing.

6.1 VC v. Binding in Sluicing

\begin{align}
*\text{Pam}_1 \text{ read a book, but } \underline{\text{Bill}_2} \text{ wouldn’t say which book } \langle \text{IP he read } x \rangle
\end{align}

- **Vehicle Change in Sluicing.** However, the exact same sluicing configuration displays VC effects (see also Merchant 2001).

\begin{align}
\text{Pam}_1 \text{ read a book, but } \underline{\text{she}_1} \text{ wouldn’t say which book } \langle \text{IP Pam read } x \rangle
\end{align}

6.2 The VC Proposal Extended

- **Separate Mechanisms.** The contrast above can first be taken to reveal that different mechanisms are necessarily employed to generate sloppy interpretations and VC effects.

- **Sloppy Pronouns as Binding.** Let sloppy interpretations of pronouns be the result of semantic binding (e.g., Sag 1976, Williams 1977).

Among other ungrammatical representations for (55) will be the slightly simplified LF representation in (57).

\begin{align}
\text{a book } [\text{AC } \lambda x \text{ Pam read } x] \text{ but } \underline{\text{Bill}_2} [\text{PD } \lambda x \text{ wouldn’t say [WHICH book } \langle \text{VP he read } x \rangle]]
\end{align}

Binding into the ellipsis site by Bill will require extending the PD to include the relevant binder index. No AC exists in this representation such that \([\text{AC}]^g \in [\text{PD}]^g \).

\begin{align}
\text{(58) i.) } & [\text{AC}]^g = \lambda x. \text{ Pam read } x \\
\text{(59) ii.) } & [\text{PD}]^g = \{ p : \lambda x. \text{ Bill wouldn’t say } Z \text{ book, Bill read } y \mid Z \in D_{(\text{et}(et, t))} \} \\
\text{(60) iii.) } & [\text{AC}]^g \notin [\text{PD}]^g, \text{ ellipsis is not licensed}
\end{align}

- **VC as Coreference+Movement.** The Coreference+Movement strategy for VC effects makes it unnecessary to bind into the ellipsis site from the subject position of the embedding clause to generate VC effects.

\begin{align}
\text{Pam}_1 [\text{AC } \lambda x \text{ a book } \lambda y \text{ read } y] \text{ but } \\
\text{she}_1 \text{ wouldn’t say [she}_1 [\text{PD } \lambda x \text{ WHICH book } \langle \text{VP she read } x \rangle]]
\end{align}

The result is the identification of a PD and AC such that \([\text{AC}]^g \in [\text{PD}]^g \).

\begin{align}
\text{(61) i.) } & [\text{AC}]^g = \lambda x. \text{ a book, x read } y \\
\text{(62) ii.) } & [\text{PD}]^g = \{ p : \lambda x. \text{ Z book, x read } y \mid Z \in D_{(\text{et}(et, t))} \} \\
\text{(63) iii.) } & [\text{AC}]^g \in [\text{PD}]^g, \text{ ellipsis is licensed}
\end{align}

7 Conclusion

- **VC effects are more restricted in ACD environments than other VPEs.**
- **Available treatments of VC effects fail to predict the contrast.**
- **VC effects are reducible to motivated mechanisms and constraints on ellipsis.**
- **VC effects are correctly predicted in coordinations and certain ACDs.**
- **The proposed analysis correctly distinguishes between VC effects and bound pronouns.**
• **Acknowledgements.** Thank you to Dustin Chacón, Kyle Johnson, and Brian Reese, the participants of the Spring 2017 Topics Seminar at UMN, and the reviewers for the 2019 LSA for helpful discussion and comments. The responsibility for all errors and misrepresentations lies solely with me.

References

